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Abstract 

In this paper, we extend the work of Oppenheimer & Snyder (1939) who treated 
the zero curvature case in the gravitational collapse of spheres of dust intended 
to represent collapsing stars. A solution is given which is valid for all space 
and is characterized by negative curvature of the space within a sphere of dust. 
This solution is obtained by matching the negative curvature interior solution 
(as well as, for completeness, zero and positive curvatures interior solutions) to 
an exterior Schwarzschild geometry. In this solution, corresponding to the case 
of a Newtonian system with positive total energy, the mass as seen by an 
observer at infinity is found to be positive definite. Also, in each case, the 
positive definite mass m is related to the density p and radius r [defined as the 
square root of the (surface area/47r)] of the dust cloud via m = (47r/3) prS. The 
methods employed here for matching interior and exterior solutions are 
applicable to the construction of cosmological models in which the sign of the 
curvature and/or expansion rate differ in two or more regions, e.g. a universe 
expanding in one region and contracting in another. 

1. Introduction 

I n  Newton ian  mechanics  one inves t igates  the  expans ion  or collapse 
of  ~ homogeneous  spherical  ball  of  dust  b y  in tegra t ing  Newton ' s  
equat ions.  The  same p rob lem in general  r e l a t iv i ty  is more  compl ica ted ;  
it  usual ly  involves solving Eins te in ' s  field equat ions  in two coordinate  
pa tches  and  then  fi t t ing the  geometr ies  together .  The  pa tch ing  
p rob lem is of ten the  mos t  difficult p a r t  of  the  problem.  However ,  
in the  case of  expand ing  or collapsing dust ,  an  interest ing theo rem 
due to  Beckedorf f  & Misner (unpubl ished observat ions) ,  and  Lindquis t  
& Wheeler  (1957) reduces the  pa tch ing  p rob lem a lmos t  to the  sim- 
pl ic i ty  of  N e w t o n i a n  mechanics .  This  t heo rem (Harr i son  et al., 1965) 
s ta tes  t h a t :  A necessary  and  sufficient condit ion for two 4-geometries  
to join smoo th ly  (at the  interface) is t h a t  part icles a t  the  in terface  
follow s imul taneous ly  the  geodesic laws of mot ion  for the  two separa te  
geometr ies .  The  m e t h o d  is appl ied b y  Har r i son  et al. (1965) for the  
case of  posi t ive  cu rva tu re  of  the  space wi th in  the  dust.  Th rough  the  
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use of this theorem one can match the geometries without explicitly 
matching the metric tensors and their derivatives. 

In this paper we consider the cases of zero and negative curvature 
as well as (for completeness) positive curvature. One objective is to 
write the solution in such a way that  it can be used in a subsequent 
paper concerning the gravitational collapse of rotating balls of dust. 

In Section 2, Newton's equations for the gravitational collapse of 
a ball of dust are written down and integrated. This is done to facilitate 
the interpretation of the relativistic results for the eases of zero and 
negative curvature. For the case of positive curvature, it is often more 
convenient to interpret the solution via the initial value equations at 
the point of time symmetry (Cohen, 1967, 8). In Sections 3 and 4 
geodesics are investigated. The geometries are matched and the 
results are discussed physically in Sections 5 and 6. In Section 7, the 
effect of rotation is considered. 

2. N e w t o n i a n  Col lapse 

To facilitate the interpretation of later results, a short Newtonian 
investigation of the expansion or collapse of a dust ball is given here. 
Newton's equations for the outermost dust particle of the dust ball are 

M i '  = - M m r  -2  (2.1) 

Here M denotes the geometrized mass (Harrison et al. ,  1965) of the 
dust particle, m the mass of the entire dust ball, r the radius of the 
ball, and the dot denotes differentiation with respect to time. Integra- 
tion of equation (2.1) yields 

i "2 = - K ~  § 2 m r  -1  (2.2) 

where - K ~  is an integration constant equal to twiee the total energy 
of the particle per unit mass. 

I f  the eases of positive, zero and negative K n are investigated 
separately, the solution takes the simple form 

r = r 0 sin 2 (~?/2) (2.3a) 

t = (�89 1/~ (~t -- sinv) 

for 0 < K~ = 2 m / r  o (def. ofro), 

~. = ~ t2 /3  
(2.3b) 

fi8 = 9 m / 2  
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for K~ = 0, and 
r = r0 sinh 2 (V/2) 

t = (�89 (ro~/2m) ~/2 (sinh V - ~) (2.3c) 

for 0 > K n = - 2 m / r o .  
For K~ > 0 the dust expands and then recontracts. In the other 

two cases the dust only expands or contracts. In general relativity, 
the cases of K .  positive, zero and negative correspond to positive, 
zero and negative curvature of the space within the dust. Also the 
expressions (2.3a-c) become identical with those of general relativity 
if the time is replaced by the proper time. 

3. In ter ior  So lu t ion  

The space interior to a homogeneous distribution of dust is often 
described by the Robertson-Walker metric (Robertson, 1935; 
Walker, 1937) : 

ds 2 = - d T  2 + a2(T) [1 + (k/4) U2] -2 [dU 2 + U 2 dO 2 + U 2 sin 2 0 d~ 2] 

(3.1) 

Here/c -- l, 0 , -1  corresponds to positive, zero or negative curvature of 
the space within the dust. 

The quanti ty a, which is proportional to the luminosity radius of 
the dust ball, must satisfy the field equation 

G00 = 8~T oo 

In a synchronous frame (Landau & Lifshitz, 1962) on a three-dimen- 
sional spacelike surface, this equation takes the form 

(~)R § K2 = 167rp 

where (3)R is the scalar curvature of the spacelike surface, K~ is the 
extrinsic curvature related to the second fundamental form Ki j  via 

K2 = (K~ ~) ~ - K ij Ki 5 

and p is the energy density of the dust. 
Direct calculation yields 

(3)R = 6lea -2 and K2 = 6d 2 a -2 

Here d denotes differentiation with respect to T. Consequently the 
above field equation takes the form 

~ a - 2 =  (s.p/3) - ( a / a )  2 
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The Robertson-Walker metric (Robertson, 1935; Walker 1937) is 
often used to describe a homogeneous and isotropie universe (a 
Friedman universe). The average density p necessary to yield a given 
H u b b l e  cons tan t  H -- d / a  depends  on the  cu rva tu re  cons tan t  k. A 
larger  dens i ty  is necessary  for posi t ive cu rva tu re  t h a n  for zero or nega-  
t ive  cu rva tu re  as can be seen f rom inspect ion of the  above  equat ion.  

W h e n  these three  cases are t r ea t ed  separa te ly ,  we ob ta in  resul ts  
v e r y  similar  to those of  equa t ion  (2.3) : 

f o r / c =  1, 

for k = 0, and  

a = ao sin 2 (~//2) 

T = (ao/2)(7 - sin~) 

a0 = (87r/3) p a  a 

(3.2a) 

a = ao sinh 2 (7/2) 

T = (ao/2)(sinh V - 7) (3.2c) 

a 0 = (87r/3) pa  3 

for k = - 1 .  
He re  p is the  t ime  dependen t  dens i ty  of  the  dust  while a0 and  

are in tegra t ion  constants .  
I n  the  space described b y  this met r ic  there  are geodesics for which 

U --- cons tan t  and  T is the  p roper  t ime  along the  geodesic. This  is no t  
surpris ing since the  dus t  was  assumed  to be co-moving in the  der iva t ion  
of this metr ic .  

4. E x t e r i o r  S o l u t i o n  

The space exter ior  to a sphere of  dus t  can be descr ibed b y  the  
Schwarzschi ld  met r ic :  

ds  2 = - A 2 d t  ~ + B 2 d r  2 + r2dO ~ + r~s in2Odcp  2 (4.1) 

where  
A 2 = B  -2  = 1 - 2 m r  -1  

Here  the  cons tan t  m is the  mass  seen b y  an observer  a t  infinity. The  
connect ion be tween  this mass  and  the  dens i ty  of  the  dus t  can be 
ob ta ined  b y  ma tch ing  the  inter ior  and  exter ior  solutions (patching).  

a = a T  2/~ 

~3 = 6rrpa a (3.2b) 
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An especially simple way to obtain the geodesic equations for radial 
motion of a dust particle in this geometry (E% 4.1) is via the varia- 
tional principle 

These geodesic equations are 

and 

fds 

[A2t']'= 0 (4.2) 

[ A - 2 r ' ]  ' § (A~)~ (t') 2 + A - 4 ( r ' )  ~ = 0 (4.3) 

where the prime denotes differentiation with respect to the proper time 
T ( d T S - - - d s  2) and A 2 =  1 -  2 m r  -1.  Integration of equation (4.2) 
yields 

A 2 t  ' -= K (4.4) 

where K is an integration constant. From equation (4.3), t' can be 
eliminated via substitution of equation (4.4) yielding 

[A-2(r')2] ' + K S A - ~ ( A 2 ) '  = 0 (4.5) 

after some manipulation. 
Integration of equation (4.5) yields 

(r') s = K s + -KA 2 = K 2 + -K - 2 m K r  -1  (4.6) 

where K is an integration constant. For large r and small velocities, 
equation (4.6) should reduce to a Newtonian expression (2.2). The 
two expressions (4.6) and (2.2) agree in this limit i f /~ = - 1 .  Hence, 
equation (4.7), like equation (2.2), contains only one adjustable 
constant K. The first integral (4.6) can also be obtained directly from 
the line element by dividing all terms by the proper time and eliminat- 
ing t' via equation (4.4). This latter method gives K = - 1  auto- 
matically. 

The solution of the general relativistic equations of motion takes a 
simple form when the three cases (1 - K s) positive, zero and negative 
are treated separately. The solution is very similar to that  for the 
Newtonian case : 

r = r0 sin s (V/2) 

T = (�89 (r0S/2m) 1Is (V - sinv) (4.7a) 

f o r 0 < l - K  2=2mr~  1, 

r = f i T  2/a 

fis = 9m[2  (4.7b) 
24 
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for K 2 = 1, and  
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r = r0 sinh e (~?/2) 

T = (�89 (roS/2m) 1/2 (sinhv - 7) (4.7c) 

for 0 > 1 - K 2 -- -2mroL  
The expressions t (2.3a-c) and (4.7a-c) differ only in t ha t  the t ime 

in equat ion (2.3a-c) is replaced by  the proper t ime in equat ion (4.7a-c). 
The solution (4.7a-c) describes the mot ion of a test  particle in 

gravi ta t ional  field of a spherically symmetr ic  body  of mass m. When  
the massive body  is composed of gravi tat ional ly collapsing dust,  
there is a connection between the mass seen by  an observer at  infinity 
and the  densi ty  of the dust.  This connection is obtained by  matching 
the interior and exterior solutions. 

5. Matching of Geometries and Discussion 

Application of the theorem discussed in Section 1, reduces the 
problem of matching 4-geometries to t ha t  of matching geodesics. 
In  Sections 3 and 4 the geodesics can be matched by inspection. The 
motion of the same particle is describable in two different coordinate 
patches. Thus, in each description, the proper t ime of a particle at  
the  interface between the two geometries and the proper circum- 
ference of the ball of dust  should agree. 

In  view of the  above discussion, comparison of equations (3.2a-e) 
and  (4.7a-c) yields 

[1 + (k/4) Uo2] -1 a0 U0 = r0 

ao = (ro3/2m) ~/2 (5.1a) 

for k = I or -i, and 

aUo~- fl (5.1b) 

for k= O. 
Thus, if  the conditions (5.1a-b) are satisfied, the 4-geometries will 

join smoothly  at  the interface. These conditions (5.1a-b) when 
combined with  equations (3.2a-c) and (4.7a-c) yields 

m = (4~/3)  p ~  (5.2) 

t The  or igin a n d  s ign of  t he  t i m e  in  t he  above  express ion  are  a r b i t r a r y .  T h u s  
t h e  a b o v e  so lu t ions  are  va l id  i f  t he  t i m e  t is r ep laced  b y  •  - to). Th i s  is also 
true of the previous solutions. The substitution t-->-t  gives an initially 
collapsing solution. 

:~ For the case where k = 1 or -1 this result is obtained as follows: 
1 = (8~/3) pa3/ao = (8~r/3) prS(1 q- (k/4) Uo2)3 /ao  UO 3 = (87r/3) pr 8 ao 2 r~ -3 

= (47r/3) pr31m. 
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for each case. Hence, the general relativistic expression for the mass 
of a homogeneous ball of dust  is identical with the well known 
Newtonian expression in terms of the densi ty p and radius r of the 
dust  ball. Also, in each case the proper t ime required for collapse from 
a finite radius to the gravitat ional  radius is finite. 

To an observer at  infinity, the radius of the dust  ball always 
appears to be greater t han  the Schwarzschild radius. Thus, an 
observer is unable to see the lat ter  stages of the collapse because of 
the t ime dilation. Since no energy escapes from the dust  ball, the mass 
seen by  this observer is constant.  On the other hand,  if  the ball of 
dust  (with r > 2m) is initially expanding it  will recontraet  only for 
the case/c = 1. 

Using the method  described above there can be constructed a 
universe which has sections wi th  negative as well as positive curvature 
and with  all of these sections fitt ing together smoothly. A simple 
example can be constructed as follows: In  the above calculations we 
have obtained the geometry exterior and interior to a collapsing dust  
bal lwi th  negative curvature withini t .  I f  a positive curvature Fr iedman 
universe is then  patched to the large r port ion of the Schwarzschild 
region, we have a universe. The method  used to pa tch  these two 
regions together is identical with t h a t  used in this paper to  patch  
the dust  ball to the Schwarzschild region. I t  is not  known whether the 
resulting universe is open or closed. 

As an aid to visualizing the situation, consider a closed universe 
at  the ins tant  of t ime symmet ry  containing a Schwarzschild region 
with a positive curvature  Fr iedman region at  each end. Such a 
universe is shown in Fig. 1. 

The universe wi th  a negative curvature section is very similar, it  
has a Sehwarzschild region with  a positive curvature Fr iedman region 
on one end and a negative curvature  Fr iedman region on the other. 
Such a universe can expand in one region and contract  in another.  

Other results of physical interest  can be obtained via differentiation 
of equat ion (4.7a-e) with respect to the proper time, or subst i tut ion 
of equat ion (4.7a~-c) into equat ion (4.6), yielding 

r' = (2m/r)  1/2 (1 -- rrol)  1/2 (5.3a) 

f o r k =  1, 
r ' =  (2m/r)  I/2 (5.3b) 

for/c = 0, and 
r' = (2m/r)  1/2 (1 § fro1) 1/2 (5.3) 

for/c = --1. 
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\ / -'~--- S chwo rzschild 

~ F r i e d m a n R e g m n  
Region 

Figure 1.--Closed inhomogeneous universe at the moment of Lime symmetry. 
This universe is obtained by patching positive curvature Friedman regions to 

both ends of a Schwarzschild region. 

This velocity r '  is related to the velocity ~ = dr /d t  via the line element 
(Eq. 4.1) ~" = A 4 ( r ' ) 2 [ A  s + (r')2] -1. Thus, the velocity seen by  an 
observer at  infinity (who remains at  a constant  distance from the 
center of the dust  ball) is 

i" = A ~ [ 2 m r  -1  - 2mrS1] 1/2 [1 - 2mrS1] -1/2 (5.4a) 

f o r k =  1, 

for k = 0, and 

i" = A e ( 2 m r - 1 )  1/2 (5.4b) 

i" = A 2 [ 2 m r  -1  + 2mro l ]  1/2 [1 + 2mrol]  ]/2 (5.4c) 

for k = -1 .  
In  Newtonian mechanics, there are three cases : (1) the dust  expands 

and  then  reeontracts,  (2) the dust  expands continuously wi th  the 
expansion velocity ~ approaching zero as r approaches infinity, and 
(3) the dust  expands continuously but  the expansion velocity 
approaches a finite value as r approaches infinity. Inspection of 
equat ion (5.4a-c) shows tha t  in generM relat ivi ty these three cases 
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correspond to positive,~ zero, and negative curvature respectively. 
In the latter case ~ approaches (2mr~ -I)I/2 (1 -k r~ -I 2m)i/2 as r approaches 
infinity. 

When combined with equation (5.4a-c), equation (4.4) has a 
simple physical interpretation. For/c = 1 and r = r0, equation (4.4) 
takes the form 

dT = (1 - 2mr~l) 1/2 dt (5.5) 

which is the  well-known relat ion between t ime intervals  of  the  
Schwarzschild solution. Fo r  k = 0 and k = - 1 ,  the  dust  expands to 
infinite radius. Consequently,  the  expressions can be compared  wi th  
the  results of special re la t ivi ty ,  since the Schwarzschild geomet ry  
is asymptot ica l ly  fiat. According to special relat ivi ty,  the t ime 
interval  dT measured  by  an observer  sitting on a moving part icle is 
shorter  t h a n  the  t ime interval  dt seem by  a s ta t ionary  observer,  i.e. 

dT = (1 - #2)1/2 dt (5.6) 

Subs t i tu t ion  of the  value of # as r approaches infinity yields 

t '=  (dT/dt) = 1 (5.7) 

for ]c = 0, and 
t ' =  (i -k 2mrS1) 112 (5.8) 

for k = --1 where t' = dT/dt. 
These expressions are identical  wi th  equat ion (4.4) for r--> 

and/c  = 0 and - 1  respectively.  Thus,  in certain regions the  results of 
equat ion  (4.4) can be obta ined  by  simple physical  arguments .  

6. Discussion of Astrophysical Applications 

These results allow a general relativistic descript ion of idealized 
astrophysical  systems which expand  and never  recon t rac t  as well as 
those which recontract ,  e.g. exploding stars (supernovae), galaxies, 
or clusters of galaxies at  the stage where the pressure and ro ta t ion  are 
negligible. The negat ive curva ture  case corresponds to an unbound  

For a discussion of a ball of dust with positive curvature via the initial 
value equations, see Harrison et al. (1965). An extensive bibliography of 
previous work on the subject is also given there. 

:~ A similar problem was considered by Wahlquist & Estabrook (1967). 
Physical Review, 156, 1359 ; see also, e.g., Oppenheimer & Snyder (1939). Physi- 
cal Review, 56, 455 ; MeVitte (1964), Astrophysical Journal, 140, 401. 
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system in l~ewtonian mechanics, one which never recontracts if it is 
initially expanding. The zero curvature case corresponds to the transi- 
tion between bound and unbound systems (the zero total energy case) ; 
it just barely expands to infinity using up all its kinetic energy in 
the process. Although it is possible, it is very unlikely in the k = -1 
case that the velocity vectors will be arranged such that the system 
will collapse. Consequently, in a physical situation, the Ic -- -1 
case is more likely to be expanding than contracting. 

Using the method discussed in this paper, one can construct general 
relativistic supernovae models. The expanding envelope of the 
supernovae corresponds to the expanding negative curvature solution 
given here. For example, to construct such a model of a supernova, 
patch an interior solution (collapsing or static) to an exterior 
Schwarzschild solution, then patch this to an expanding nega- 
tive curvature solution, and finally patch this to another exterior 
Schwarzschild solution. For such a model, the envelope blows off, 
leaving a remnant behind, in agreement with non-relativistic models. 
The mass of this remnant mr is given by  

m r = (4w/3) prl s 

where p is the density and r~ is the inner radius of the envelope. In 
this way, we can treat  the expansion or collapse of thick shells of dust. 

7. Effect of Rotation 

An important question in astrophysics is: Does rotation stop 
collapse or does collapse crush rotation? (Hoyle et al., 1964). In order 
to s tudy this question, consider a test particle on the surface of the 
collapsing ball of dust. In Newtonian mechanics one learns that  if the 
particle has sufficient tangential velocity, it will remain in orbit 
around the collapsing dust. I f  the particle remains in orbit, it has a 
point of closest approach to the center of the collapsing dust ball. 
At this point the outward radial acceleration is equal to or greater 
than zero. The former case corresponds to circular motion. 

The general relativistic equations of motion of the test particle 
can be obtained from the variational principle (4.1) yielding 

(r~')'= o (7.1a) 

(AUg) ' -- 0 (7.1b) 

2B 2 r" + (BZ)~ (r') = 2r(9o' ) 2 _ (A 2)~ (t')2 (7.1 c) 
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Integration of equations (7.1a) and (7.]b) yields 

r 2 ~' = l (7.2a) 

A 2 t  ' = K (7.2b) 

and substitution into equation (7.1e) yields 

2 B 2 r  " + (B2)r(r ' )  2 = 212r -a  - 2 m r - 2 K 2 A  -~ (7.2c) 

At the test particle's point of closest approach to the center of the 
dust ball, the radial velocity r' vanishes and the radial acceleration r" 

is equal or greater than zero. This implies that  

l ~ >7 m r K ~ A  -~ (7.3) 

On the other hand, the world line of the particle must remain within 
the light cone. This is true only if 

12 ~ K 2 r 2 A  -2  (7.4) 

at the point of closest approach. These two conditions (7.3) and (7.4) 
are consistent only for r ~> 3m. 

Thus, for r/> 3m, rotation of the test particle about the center of 
the dust ball can stop the collapse of the particle, t The particles can 
remain in orbit around the collapsing dust ball. However, for 
3m > r > 2m the gravitational attraction overpowers the centrifugal 
force. Thus, in this region the rotation cannot stop the collapse. This 
is because the expression for centrifugal force deviated from the 
Newtonian one since the particle world line must remain within the 
light cone; the local velocity of the particle cannot exceed tha t  of 
light. 

A collapsing star can shed some of its angular momentum via the 
above mechanism and collapse towards its Schwarzschild radius 
leaving planets in orbit about it. But for 3m > r > 2m the planets 
cannot remain in orbit. The centrifugal force is overpowered by the 
gravitational attraction and everything collapses. 
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t For a complete discussion of such orbits see/-Iagihara, Y. (1931). Japanese 
Journal of Astronomy and Geophysics, VIII, 67. See also, for example, Kucho- 
wicz, B. (1966). Acta physiologica polonica, 30, 981, and the references cited 
there. 
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