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Abstract

1In this paper, we extend the work of Oppenheimer & Snyder (1939) who treated
the zero curvature case in the gravitational collapse of spheres of dust intended
to represent collapsing stars. A solution is given which is valid for all space
and is characterized by negative curvature of the space within a sphere of dust.
This solution is obtained by matching the negative curvature interior solution
(as well as, for completeness, zero and positive curvatures interior solutions) to
an exterior Schwarzschild geometry. In this solution, corresponding to the case
of a Newtonian system with positive total energy, the mass as seen by an
observer at infinity is found to be positive definite. Also, in each case, the
positive definite mass m is related to the density p and radius » [defined as the
square root of the (surface area/4sr)] of the dust cloud via m = (47/3) pr3. The
methods employed here for matching interior and exterior solutions are
applicable to the construction of cosmological models in which the sign of the
curvature and/or expansion rate differ in two or more regions, e.g. & universe
expanding in one region and contracting in another.

1. Introduction

In Newtonian mechanics one investigates the expansion or collapse
of a homogeneous spherical ball of dust by integrating Newton’s
equations. The same problem in general relativity is more complicated ;
it usually involves solving Einstein’s field equations in two coordinate
patches and then fitting the geometries together. The patching
problem is often the most difficult part of the problem. However,
in the case of expanding or collapsing dust, an interesting theorem
due to Beckedorff & Misner (unpublished observations), and Lindquist
& Wheeler (1957) reduces the patching problem almost to the sim-
plicity of Newtonian mechanics. This theorem (Harrison et al., 1965)
states that: A necessary and sufficient condition for two 4-geometries
to join smoothly (at the interface) is that particles at the interface
follow simultaneously the geodesic laws of motion for the two separate
geometries. The method is applied by Harrison et al. (1965) for the
case of positive curvature of the space within the dust. Through the
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use of this theorem one can match the geometries without explicitly
matching the metric tensors and their derivatives.

In this paper we consider the cases of zero and negative curvature
as well as (for completeness) positive curvature. One objective is to
write the solution in such a way that it can be used in a subsequent
paper concerning the gravitational collapse of rotating balls of dust.

In Section 2, Newton’s equations for the gravitational collapse of
a ball of dust are written down and integrated. This is done to facilitate
the interpretation of the relativistic results for the cases of zero and
negative curvature. For the case of positive curvature, it is often more
convenient to interpret the solution via the initial value equations at
the point of time symmetry (Cohen, 1967, 8). In Sections 3 and 4
geodesics are investigated. The geometries are matched and the
results are discussed physically in Sections 5 and 6. In Section 7, the
effect of rotation is considered.

2. Newtonian Collapse

To facilitate the interpretation of later results, a short Newtonian
investigation of the expansion or collapse of a dust ball is given here.
Newton’s equations for the outermost dust particle of the dust ball are

M# = —Mmr=2 2.1)
Here M denotes the geometrized mass (Harrison ef al., 1965) of the
dust particle, m the mass of the entire dust ball, r the radius of the

ball, and the dot denotes differentiation with respect to time. Integra-
tion of equation (2.1) yields

72 =—K, + 2mr" (2.2)

where —K, is an integration constant equal to twice the total energy
of the particle per unit mass.
If the cases of positive, zero and negative K, are investigated
separately, the solution takes the simple form
7 =ry8in? (y/2)

(2.3a)
t = (§) (ro®/2m)"2 ( — siny)
for 0 < K, = 2m/ry(def. of ry),
r = P23

65— om2 (2.3b)
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for K, = 0, and

r = ro8inh? (n/2)

t=(3) (ro*/2m)'* (sinh — ) (2.3¢)
for 0 > K, = —2m/r,.

For K, > 0 the dust expands and then recontracts. In the other
two cases the dust only expands or contracts. In general relativity,
the cases of K, positive, zero and negative correspond to positive,
zero and negative curvature of the space within the dust. Also the

expressions (2.3a—c) become identical with those of general relativity
if the time is replaced by the proper time.

3. Interior Solution

The space interior to a homogeneous distribution of dust is often
described by the Robertson-Walker metric (Robertson, 1935;
Walker, 1937):

ds? = —dT? + aX(T)[1 + (k/4) U2 [dU* + U2dH? + U2sin? 60 dg?]
(3.1)

Here k=1, 0,—1 corresponds to positive, zero or negative curvature of
the space within the dust.

The quantity a, which is proportional to the luminosity radius of
the dust ball, must satisfy the field equation

GO0 = 8700

In a synchronous frame (Landau & Lifshitz, 1962) on a three-dimen-
sional spacelike surface, this equation takes the form

®OR+ Ky =16mp

where ¥R is the scalar curvature of the spacelike surface, K, is the
extrinsic curvature related to the second fundamental form K via

Ky = (K{)*— K9 Ky
and p is the energy density of the dust.
Direct calculation yields
®OR = 6ka2 and K, =6d%a2

Here d denotes differentiation with respect to 7'. Consequently the
above field equation takes the form

ka2 = (8mp3) — (ifa)?
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The Robertson—Walker metric (Robertson, 1935; Walker 1937) is
often used to describe a homogeneous and isotropic universe (a
Friedman universe). The average density p necessary to yield a given
Hubble constant H = dja depends on the curvature constant k. A
larger density is necessary for positive curvature than for zero or nega-
tive curvature as can be seen from inspection of the above equation.

When these three cases are treated separately, we obtain results
very similar to those of equation (2.3):

a = aysin® (y/2)
T = (ao/2) (n — siny) (3.2a)
ao = (87/3) pa’

fork=1,
a = o T3
a® = 6mpa® (3.2b)
for k=0, and
@ = aysinh? (n/2)
T = (a0/2) (sinhy — 7) (3.2¢)
ag = (87/3) pa®
for k= —1.

Here p is the time dependent density of the dust while ey and «
are integration constants.

In the space described by this metric there are geodesics for which
U = constant and T is the proper time along the geodesic. This is not
surprising since the dust was assumed to be co-moving in the derivation

of this metric.

4. Exterior Solulion
The space exterior to a sphere of dust can be described by the
Schwarzschild metric:
ds? = —A%dt* + B> dr® + r2d6? + r?sin? 0 de® (4.1)

where
A2 =B 2=1—2mr1

Here the constant m is the mass seen by an observer at infinity. The
connection between this mass and the density of the dust can be
obtained by matching the interior and exterior solutions (patching).
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An especially simple way to obtain the geodesic equations for radial
motion of a dust particle in this geometry (Eq. 4.1) is via the varia-
tional principle

0=35 [ds
These geodesic equations are
[4%F] =0 (4.2)
and
[A727'] + (4%, )2+ A Hr')2=0 (4.3)

where the prime denotes differentiation with respect to the proper time
T(dT?=—ds?) and A?=1—2mr~!. Integration of equation (4.2)
yields

A%y =K (4.4)

where K is an integration constant. From equation (4.3), ¢ can be
eliminated via substitution of equation (4.4) yielding

[A=2(0")2] + K2 A~4A%) =0 (4.5)

after some manipulation.
Integration of equation (4.5) yields

()2 =K*+ KA*=K?+ K — 2mEr! (4.6)

where K is an integration constant. For large » and small velocities,
equation (4.6) should reduce to a Newtonian expression (2.2). The
two expressions (4.6) and (2.2) agree in this limit if K = —1. Hence,
equation (4.7), like equation (2.2), contains only one adjustable
constant K. The first integral (4.6) can also be obtained directly from
the line element by dividing all terms by the proper time and eliminat-
ing ¢ via equation (4.4). This latter method gives K =—1 auto-
matically.

The solution of the general relativistic equations of motion takes a
simple form when the three cases (1 — K?) positive, zero and negative
are treated separately. The solution is very similar to that for the
Newtonian case:

7 = 7o sin®(n/2)

T = (3) (ro*[2m)"? (5 — sinn) (4.72)
for 0 < 1 — K2 = 2msry?,
r = RT3
B = 9m/2 (4.7D)
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for K2=1, and
7 = rosinh? (»/2)

T = (}) (ro%/2m)*2 (sinh» — 7) (4.7¢)

for 0 > 1 — K% =—2mrg".

The expressionst (2.3a—c) and (4.7a—c) differ only in that the time
in equation (2.3a—c) isreplaced by the proper time in equation (4.7a—c).

The solution (4.7a~c) describes the motion of a test particle in
gravitational field of a spherically symmetric body of mass m. When
the massive body is composed of gravitationally collapsing dust,
there is a connection between the mass seen by an observer at infinity
and the density of the dust. This connection is obtained by matching
the interior and exterior solutions.

5. Matching of Geometries and Discussion

Application of the theorem discussed in Section 1, reduces the
problem of matching 4-geometries to that of matching geodesics.
In Sections 3 and 4 the geodesics can be matched by inspection. The
motion of the same particle is describable in two different coordinate
patches. Thus, in each description, the proper time of a particle at
the interface between the two geometries and the proper circum-
ference of the ball of dust should agree.

In view of the above discussion, comparison of equations (3.2a-c)
and (4.7a—c) yields

L+ (k/4) UT ag Uy =10

ag = (re3[2m)4? (5.1a)

fork=1or—1, and
alUy=P (5.1b)

for k=0.

Thus, if the conditions (5.1a-b) are satisfied, the 4-geometries will
join smoothly at the interface. These conditions (5.1a~b) when
combined with equations (3.2a—c) and (4.7a—c) yield{

m = (4 [3) pr’ (5.2)

+ The origin and sign of the time in the above expression are arbitrary. Thus
the above solutions are valid if the time ¢ is replaced by +(¢ — o). This is also
true of the previous solutions. The substitution ¢ — —¢ gives an initially

collapsing solution.
1 For the case where k& = 1 or —1 this result is obtained as follows:

1 = (87/3) pad/ao = (8m/3) pr3(L 4 (k/4) Uo2)3/ag Ugd = (8w/3) pr3 ae?13°
= (47/3) pr3/m.
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for each case. Hence, the general relativistic expression for the mass
of a homogeneous ball of dust is identical with the well known
Newtonian expression in terms of the density p and radius » of the
dust ball. Also, in each case the proper time required for collapse from
a finite radius to the gravitational radius is finite.

To an observer at infinity, the radius of the dust ball always
appears to be greater than the Schwarzschild radius. Thus, an
observer is unable to see the latter stages of the collapse because of
the time dilation. Since no energy escapes from the dust ball, the mass
seen by this observer is constant. On the other hand, if the ball of
dust (with » > 2m) is initially expanding it will recontract only for
the case k= 1.

Using the method described above there can be constructed a
universe which has sections with negative as well as positive curvature
and with all of these sections fitting together smoothly. A simple
example can be constructed as follows: In the above calculations we
have obtained the geometry exterior and interior to a collapsing dust
ball with negative curvature withinit. If a positive curvature Friedman
universe is then patched to the large r portion of the Schwarzschild
region, we have a universe. The method used to patch these two
regions together is identical with that used in this paper to patch
the dust ball to the Schwarzschild region. It is not known whether the
resulting universe is open or closed.

As an aid to visualizing the situation, consider a closed universe
at the instant of time symmetry containing a Schwarzschild region
with a positive curvature Friedman region at each end. Such a
universe is shown in Fig. 1.

The universe with a negative curvature section is very similar, it
has a Schwarzschild region with a positive curvature Friedman region
on one end and a negative curvature Friedman region on the other.
Such a universe can expand in one region and contract in another,

Other results of physical interest can be obtained via differentiation
of equation (4.7a—c) with respect to the proper time, or substitution
of equation (4.7a—c) into equation (4.6), yielding

7 = (2m[r) 2 (1 — rrg )12 (5.3a)
fork=1,
7 = (2m[r)/? (5.8b)
for k=0, and
v = (2m[r)2 (1 + rrgh)l2 (5.3)

for k= —1.
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Friedman
Region

Schwarzschild
Region

Friedman
Region

Figure 1.—Closed inhomogeneous universe at the moment of time symmetry.
This universe is obtained by patching positive curvature Friedman regions to
both ends of a Schwarzschild region.

This velocity 7’ isrelated to the velocity # = dr/dt via the line element
(Eq. 4.1) 72 = 4*")?*[A2% + (»")?]"". Thus, the velocity seen by an
observer at infinity (who remains at a constant distance from the
center of the dust ball) is

F = A2 2mrt — 2mrg V2 [1 — 2mrg L2 (5.4a)
fork=1,
7= A% 2my1)12 (5.4Db)
for k=0, and
# = A 2mr" + 2meg 12 [1 + 2ma5 ]2 (5.4c)
for k= 1.

In Newtonian mechanics, there are three cases: (1) the dust expands
and then recontracts, (2) the dust expands continuously with the
expansion velocity + approaching zero as r approaches infinity, and
(3) the dust expands continuously but the expansion velocity
approaches a finite value as r approaches infinity. Inspection of
equation (5.4a—c) shows that in general relativity these three cases
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correspond to positive,T zero, and negative curvature respectively.
In the latter case 7 approaches (2mrgt)%(1 + 751 2m)Y2 as r approaches
infinity.

When combined with equation (5.4a—c), equation (4.4) has a
simple physical interpretation. For k=1 and r=r, equation (4.4)
takes the form

dT = (1 — 2 Y2 dt (5.5)

which is the well-known relation between time intervals of the
Schwarzschild solution. For k=0 and k= —1, the dust expands to
infinite radius. Consequently, the expressioni can be compared with
the results of special relativity, since the Schwarzschild geometry
is asymptotically flat. According to special relativity, the time
interval d7' measured by an observer sitting on a moving particle is
shorter than the time interval d¢ seem by a stationary observer, i.e.

dT = (1 — #3124t (5.6)
Substitution of the value of 7 as r approaches infinity yields
¢ = (dT)dt) =1 (5.7)

for k=0, and
t = (1 + 2mrgt)H? (5.8)

for k =—1 where ¢ = d7/dt.

These expressions are identical with equation (4.4) for r —
and k = 0 and —1 respectively. Thus, in certain regions the results of
equation (4.4) can be obtained by simple physical arguments.

6. Discussion of Astrophysical Applications

These results allow a general relativistic description of idealized
astrophysical systems which expand and never recontract as well as
those which recontract, e.g. exploding stars (supernovae), galaxies,
or clusters of galaxies at the stage where the pressure and rotation are
negligible. The negative curvature case corresponds to an unbound

T For a discussion of a ball of dust with positive curvature via the initial
value equations, see Harrison et al. (1965). An extensive bibliography of
previous work on the subject is also given there.

1 A similar problem was considered by Wahlquist & Estabrook (1967).
Physical Review, 156,135%;seealso, e.g., Oppenheimer & Snyder (1939). Physi-
cal Review, 56, 455 ; McVitte (1964), Astrophysical Journal, 140, 401.
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system in Newtonian mechanics, one which never recontracts if it is
initially expanding. The zero curvature case corresponds to the transi-
tion between bound and unbound systems (the zero total energy case);
it just barely expands to infinity using up all its kinetic energy in
the process. Although it is possible, it is very unlikely in the b =—1
case that the velocity vectors will be arranged such that the system
will collapse. Consequently, in a physical situation, the £ = —1
case is more likely to be expanding than contracting.

Using the method discussed in this paper, one can construct general
relativistic supernovae models. The expanding envelope of the
supernovae corresponds to the expanding negative curvature solution
given here. For example, to construct such a model of a supernova,
patch an interior solution (collapsing or static) to an exterior
Schwarzschild solution, then patch this to an expanding nega-
tive curvature solution, and finally patch this to another exterior
Schwarzschild solution. For such a model, the envelope blows off,
leaving a remnant behind, in agreement with non-relativistic models.
The mass of this remnant m, is given by

m, = (4m[3) fﬂ'l3

where p is the density and r; is the inner radius of the envelope. In
this way, we can treat the expansion or collapse of thick shells of dust.

7. Effect of Rotation

An important question in astrophysics is: Does rotation stop
collapse or does collapse crush rotation? (Hoyle ef al., 1964). In order
to study this question, consider a test particle on the surface of the
collapsing ball of dust. In Newtonian mechanics one learns that if the
particle has sufficient tangential velocity, it will remain in orbit
around the collapsing dust. If the particle remains in orbit, it has a
point of closest approach to the center of the collapsing dust ball.
At this point the outward radial acceleration is equal to or greater
than zero. The former case corresponds to circular motion.

The general relativistic equations of motion of the test particle
can be obtained from the variational principle (4.1) yielding

(r?¢’) =0 (7.1a)
(42¢) =0 (7.1b)

2B - (BY), (') = 2r(g)? — (42), (¢)* (7.1c)
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Integration of equations (7.1a) and (7.1b) yields

g =1 (7.2a)
A2 =K (7.2b)

and substitution into equation (7.1c) yields
2B%¢" 4 (B?),(r") 2 = 21%r—% — 2mr 2 K2 A~* (7.2¢)

At the test particle’s point of closest approach to the center of the
dust ball, the radial velocity »’ vanishes and the radial acceleration r”
is equal or greater than zero. This implies that

B>mrK2A™t (7.3)

On the other hand, the world line of the particle must remain within
the light cone. This is true only if

P<K*r2A7% (7.4)

at the point of closest approach. These two conditions (7.3) and (7.4)
are consistent only for » > 3m.

Thus, for » > 3m, rotation of the test particle about the center of
the dust ball can stop the collapse of the particle.t The particles can
remain in orbit around the collapsing dust ball. However, for
3m > r > 2m the gravitational attraction overpowers the centrifugal
force. Thus, in this region the rotation cannot stop the collapse. This
is because the expression for centrifugal force deviated from the
Newtonian one since the particle world line must remain within the
light cone; the local velocity of the particle cannot exceed that of
light.

A collapsing star can shed some of its angular momentum via the
above mechanism and collapse towards its Schwarzschild radius
leaving planets in orbit about it. But for 3m > » > 2m the planets
cannot remain in orbit. The centrifugal force is overpowered by the
gravitational attraction and everything collapses.
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